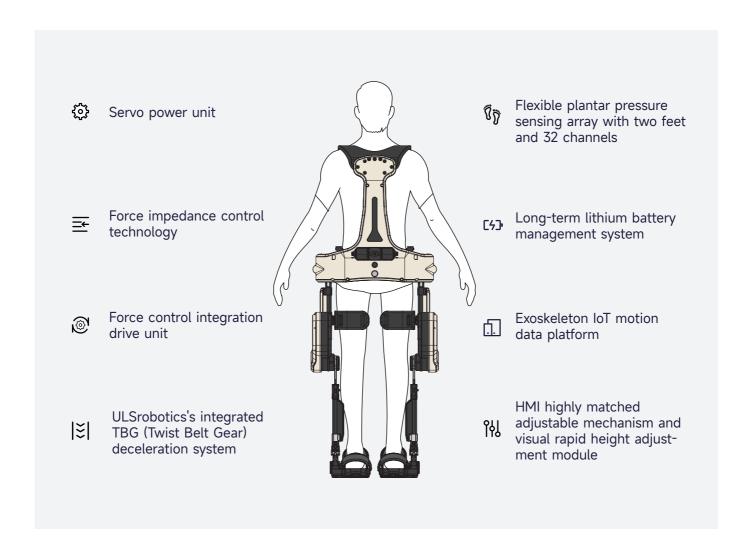
ULS ROBOTICS BES-Pro

Lower limb exoskeleton robots


BES-Pro

Lower limb exoskeleton robots

Product introduction

The Belt-drive Exoskeleton System (BES-Pro) is a Lower limb exoskeleton derived from ULSrobotics' professional products. It is designed to enable universities, R&D institutions and medical research centers to conduct further development and research.

BES -Pro lower limb exoskeleton robot integrates our self-developed advanced intelligent digital actuator to achieve one modular deceleration system and adaptive intelligent motion control system, combined with our unique software mechanical impedance, self-learning adaptive gait and artificial intelligence-based motion control algorithms and pattern recognition. Products to achieve lightweight modular design and waist exoskeleton interoperability conversion, flexible plantar pressure sensing array bipedal 32 channels, hip and knee joints with independent position sensors, not less than 16bit, visualization of the leg length adjustment. Provide developers with a technology-leading and high-performance exoskeleton robotics solution.

Cutting-edge system architecture for exoskeleton software

Supports applications in human augmentation, assisted walking and medical research.

Embedded system architecture										
API SDK Function package	Customiz- able gait curve	Non-gait curve	Adaptive force following gait	Force impedance control assistance software package	Position mode control	Torque mode control	Continuous PVT motion control	adjustment of motor controller for hip and knee joints	Phase calibration, etc.	
Software language	Unity (C#)		VS (C#, JAVA)		MicroPython		MATLAB			
Communica- tion system	CAN (CANOPEN)	Ethernet	TCP/UDP	WIFI	UART	US	USB 4G IoT		оТ	
Hardware bottom layer	Support EMG			Support OpenI		BCI Sup _l		port Leap Motion		
	Support scalable RTOS			ARM-based hardware o		driver Lib		BSP		
	Motor drive system Flexible fo sensing ar system		sing array	Double coding position feedback system		Digital man-machine interaction interface		Scalable CAN LAN		

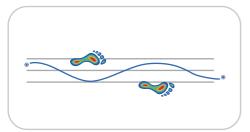
NEW

LOWER LIMB EXOSKELETON ROBOTS

ULS ROBOTICS - BES-Pro




Battery life 3-4h


12 degrees of freedom

Supports diverse applications and development functions

ULSrobotics's unique mechanical impedance software algorithm, self-learning adaptive standard gait, non-standard gait and AI-based motion control algorithm and pattern recognition

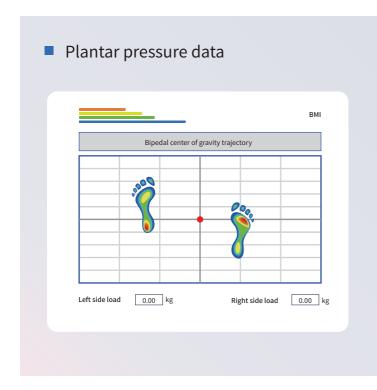
Development function

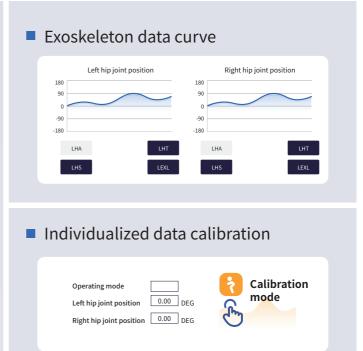
Customizable gait curve

Adaptive force following gait

Force impedance control assistance software package

Torque mode control


Continuous PVT motion control

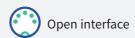

PID adjustment of motor controller for hip and knee joints

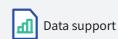
Open data and a rich suite of development APIs

The exoskeleton communicates wirelessly to display posture and assistance data in real time, enabling customized data calibration.

Data function

Human-machine integration makes an optimal teaching aid for exoskeleton


Advantages



Adaptive force following

gait

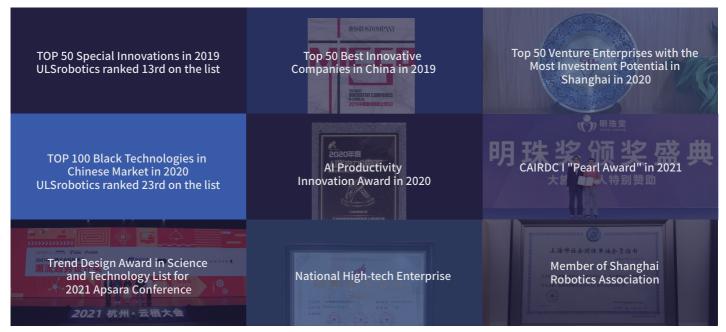
Plantar pressure distribution

Application field

Powerful equipment technical parameters to meet your application requirements

Lower limb exoskeleton robots/**product specification**ULS ROBOTICS **BES-Pro**

Equipment weight	<18kg (including 1 power battery)				
Working time	3-4 h/battery				
Battery type	Lithium battery 20~42v				
Height range	160~185cm (support height adjustment)				
Standard software	Motion control software, embedded system software, real-time discrete bus system software				
Plantar pressure	32-channel plantar pressure data support				
Degree of freedom	12 Degrees of Freedom Ontology, 4 Active Degrees of Freedom, 8 Passive Degrees of Freedom				
Driving unit	Drive and control integrated low-voltage torque servo motor system, integrated gearbox				



Company profile

ULSrobotics, founded in 2018 and headquartered in Science Park of Shanghai University of Financeand Economics, Shanghai, China, is a high-tech company based on robotics exoskeleton technology platform. ULSrobotics is dedicated in developing, manufacturing and supporting solutions for industrial, medical and educational fields with exoskeleton robots.

ULSrobotics' core R&D team is one of the earliest companies in the world to engage in exoskeleton robotics research and development, with rich experience in designing and developing robot control systems, motion-control algorithms, multi-sensor data fusion, human-computer interaction and machine vision, etc. ULSrobotics' exoskeleton product line covers upper limb, waist, lower limb and whole body, etc. The products have obtained ISO9001 quality certification and CE safety certification. Till now, ULSrobotics has a wealth of application scenarios, such as automobile manufacturing, aviation ground services, electric power, mining and educational research.

Enterprise honor

EMPOWER HUMAN BEING INFINITE

