FIT-GS-Pro 下肢驱动外骨骼机器人

FIT-GS-Pro

下肢驱动外骨骼机器人

产品简介

傲鲨智能依托专业版产品,创新推出 FIT-GS-Pro 下肢驱动外骨骼机器人,专为高校、科研机构及医疗科研单位,量身打造二次开发研究平台。

FIT-GS-Pro 集成傲鲨自主研发的智能数字驱动器,实现一体模块化减速系统与自适应智能运动控制系统深度融合。通过软件力学阻抗,以及自学习自适应步态算法,配合 AI 运动控制与模式识别技术,能够快速适应复杂的运动场景,满足多样化的开发需求。

产品采用轻量化、模块化设计理念,支持与腰部外骨骼灵活互通转换。双足配备 32 通道柔性足底压力传感阵列,精准感知足底压力变化。髋膝关节搭载不低于 16bit 的独立位置传感器,实现运动数据的高精度采集。可视化腿长调节功能,大幅提升使用便捷性。

傲鲨 FIT-GS-Pro 凭借卓越的技术实力和可靠的产品性能,为开发者提供一站式外骨骼机器人解决方案,推动外骨骼技术在更多领域的创新应用,助力科研成果的快速转化。

伺服动力单元

→ 力阻抗控制技术

⑥ 力控集成驱动单元

傲鲨整体化TBG (Twist Belt Gear) 湖油系统

菜性足底压力传感阵列 双足32通道

[4] 长效锂电管理系统

↑ 外骨骼物联网运动数据平台

人机HMI高度匹配可调机构, 以及可视化的身高快速调节模块

技术引领 外骨骼软件系统架构

支持人体增强,辅助行走,医疗科研等场景

嵌入式系统架构										
API SDK 功能包	可定制 化的步 态曲线	非步态曲线	自适应 力跟随 步态	力阻抗控 制助力软 件包	位置模式控制	扭矩模式 控制	连续PVT 运动控制	髋膝关 节电机 控制器 PID调整	相位标定等	
软件语言	Unity (C#)		VS (C#, JAVA)		MicroPython		MATLAB			
通讯系统	CAN (CANOPEN)	Ethernet	TCP/UDP	WIFI	UART	USB		4G I	4G IoT	
	支持EMG			支持 OpenBC		.] 支		持Leap Motion		
硬件 底层	支持可裁剪的RTOS			基于ARM的硬件驱		动Lib		BSP		
					马位置		数字人机 交互接口		可扩展的 CAN局域网	

NEW

下肢驱动外骨骼机器人

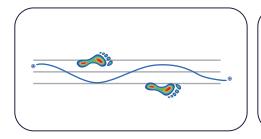
ULS ROBOTICS - FIT-GS-Pro



电池续航2~4h

足底压力 32个通道

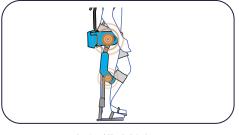
设备自重 < 18kg


自由度 12个

应用多元 支持多种开发功能模式

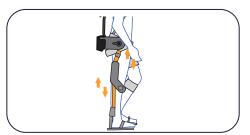
傲鲨智能独特的力学阻抗软件算法,自学习自适应标准步态,非标准步态和基于人工智能的运动控制 算法和模式识别

开发功能

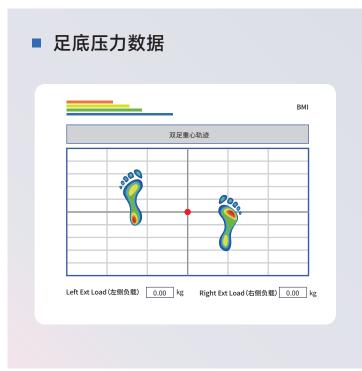


可定制化的步态曲线

自适应力跟随步态


力阻抗控制助力软件包

连续PVT运动控制

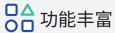


髋膝关节电机控制器PID调整

数据开放 丰富的数据开发接口

外骨骼机器人通过无线数据实现互联互通,实时获得外骨骼姿态与助力数据,可个性化数据标定。

数据功能



人机共融 科研外骨骼优选教具

产品优势

性能卓越

开放接口

₫ 数据支持

快拆智能锂电池

多样的API接口(支 持位置,扭矩直接 控制)

身高腿长快速可视 化调节和锁定

扭矩模式控制

自适应力跟随步态

足底压力分布

应用领域

产品配置清单

数量	物品
1套	下肢驱动外骨骼机器人本体
1根	绑带
1个	DIU 手控器
1个	电源适配器
1个	设备挂架
各1本	说明书、合格证、保修卡

强大设备技术参数 满足您应用需求

1.设备尺寸: 700x300x1500 (mm)(长 x 宽 x 高)。

2.设备重量: 设备自重<18kg, 重量包含一节续航不少于 2h 的动力电池。

3.动力源: 电助力驱动。

4.身高: 160~185cm (支持身高调节)。

5.温度环境: -20°C~50°C。

6.续航能力: 锂电池外包为可拆卸更换结构, 单块电池续航 2~4 小时/电池。

7.电池: 锂电池, 额定电压 36V, 容量不小于 2500mAH, 负载连续运行不少于2小时, 空载运行不少于4小时左右。

8.电池更换: 可以在不使用工具和不脱卸外骨骼的情况下, 穿戴者6s内, 自己更换电池。

9.自由度: 不少于12个自由度关节,包含4个主动自由度(电机驱动),每个主动驱动具备双编码器反馈(相对编码器,绝对编码器),每个主动关节具备独立的绝对编码精度不小于19 bit,不少于8个被动自由度。电机驱动关节对应人体的肩关节,髋关节,膝关节。

10.材质:工程塑料, 航空铝合金, 碳纤维, 钛合金。

11.足底压力: 32 通道双足底压力数据支持,额定载荷 0KG-----100KG,综合精度 0.1% (线性、滞后、重复性),灵敏度 1.0---2.0mv/v,上位机软件 Data界面中间部分为机器人相关数据的实时展示。界面底部左右各16个小白块分别代表机器 人左右脚的足底压力传感器。当足底压力发生变化时,界面上相应点位的颜色也会跟随着发生改变。当足底压力大于 0N 小于 100N 时,显示为蓝色;当足底压力大于 100N 小于 200N 时,显示为黄色;当足底压力大于 200N 时,显示为红色。

12.驱动单元: 驱控一体低压扭矩型伺服电机系统,集成减速箱,每台电机功率不低于150w。

13.髋关节前后摆动运动角度, -30°(后摆) ~165°(前摆),连续可调膝关节运动角度, -135°(屈膝) ~0°, 连续可调。踝关节上下摆动角度, -90°(下摆) ~75°(上摆)。

14.肩关节自由下垂零度情况下,矢状面上举角度≥140°,后摆角度≥30°; 肩关节额状面水平外展内收连续幅度≥150°。

15.左右肩关节具备独立的绝对物理位置传感器(不允许使用电池做位置记忆),独立反应左右肩关节上举下放的位置;对应提供支撑力量角度、位置根据使用需求由供方配合现场调整。

16.SDK: 开放SDK接口,用户可以独立控制电机和采集传感器数值。软件预留多种接口,例如 EMG 信号,EEG 信号接口,扩展设备功能。以太网接口,支持 CAN-open 总线,C#函数驱动。支持编程软件的 API 实时对外骨骼机器人进行控制和数据采集。

17.支持的编程语言: C, C++, C#, JAVA, m。

18.开发环境: Unity, Visual Studio, MATLAB。

19.功能实现: 外骨骼运动位置控制,扭矩控制,PVT连续曲线运行,关节传感器和力学传感器数据读取,电机状态信息反馈。

20.自带软件demo功能:包括常规的站立,步态模拟行走,力学跟随步态,上肢助力模式,重心训练步态或者阻抗模式。

21.WIFI 模块: 用户可以通过平板或者手机与外骨骼进行无线通信,配合提供的调试软件对机器人的步态曲线,以及相关参数做调试,同时可以读取相对应的数据如关节位置,电机力矩、速度、加速度等并生成数据报告。

22.电池检测模块:可以实时检测电池电量,电压,短路情况,方便用户随时检查电量情况并及时给机器充电,避免在使用过程中突然出现断电情况造成潜在的危险。

23.可调节性: 大腿长度调节(不小于80mm长度调节范围,髋关节转动中心到膝关节转动中心)小腿长度调节(不小于120mm长度调节范围,膝关节转动中心到踝关节转动中心)相对应的尺寸可以根据使用者的体型进行修改。

24.调整,身高调整精准性:外骨骼所有可调节处均包含刻度计量、量程。

25.关节限位机制: 各个关节都有机械限位保护机制。

上海傲鲨智能科技有限公司

地址: 上海市杨浦区纪念路8号

电话: 021-80158675

邮箱: info@ulsrobotics.com 网站: www.ulsrobotics.com Copyright © 2025 傲鲨智能 版权所有

微信扫一扫关注 傲鲨智能公众号